Analysis API Reference
This page provides API reference documentation for the Analysis module.
The Analysis module provides tools for processing and analyzing simulation results from BMTK models, including spike data and LFP/ECP data.
Spikes
The spikes
module provides functions for loading and analyzing spike data from simulations.
bmtool.analysis.spikes.load_spikes_to_df(spike_file, network_name, sort=True, config=None, groupby='pop_name')
Load spike data from an HDF5 file into a pandas DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_file
|
str
|
Path to the HDF5 file containing spike data |
required |
network_name
|
str
|
The name of the network within the HDF5 file from which to load spike data |
required |
sort
|
bool
|
Whether to sort the DataFrame by 'timestamps' (default: True) |
True
|
config
|
str
|
Path to configuration file to label the cell type of each spike (default: None) |
None
|
groupby
|
Union[str, List[str]]
|
The column(s) to group by (default: 'pop_name') |
'pop_name'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A pandas DataFrame containing 'node_ids' and 'timestamps' columns from the spike data, with additional columns if a config file is provided |
Examples:
>>> df = load_spikes_to_df("spikes.h5", "cortex")
>>> df = load_spikes_to_df("spikes.h5", "cortex", config="config.json", groupby=["pop_name", "model_type"])
Source code in bmtool/analysis/spikes.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
bmtool.analysis.spikes.compute_firing_rate_stats(df, groupby='pop_name', start_time=None, stop_time=None)
Computes the firing rates of individual nodes and the mean and standard deviation of firing rates per group.
Args: df (pd.DataFrame): Dataframe containing spike timestamps and node IDs. groupby (str or list of str, optional): Column(s) to group by (e.g., 'pop_name' or ['pop_name', 'layer']). start_time (float, optional): Start time for the analysis window. Defaults to the minimum timestamp in the data. stop_time (float, optional): Stop time for the analysis window. Defaults to the maximum timestamp in the data.
Returns:
Tuple[pd.DataFrame, pd.DataFrame]:
- The first DataFrame (pop_stats
) contains the mean and standard deviation of firing rates per group.
- The second DataFrame (individual_stats
) contains the firing rate of each individual node.
Source code in bmtool/analysis/spikes.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
bmtool.analysis.spikes._pop_spike_rate(spike_times, time=None, time_points=None, frequency=False)
Calculate the spike count or frequency histogram over specified time intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
Union[ndarray, list]
|
Array or list of spike times in milliseconds |
required |
time
|
Optional[Tuple[float, float, float]]
|
Tuple specifying (start, stop, step) in milliseconds. Used to create evenly spaced time points
if |
None
|
time_points
|
Optional[Union[ndarray, list]]
|
Array or list of specific time points for binning. If provided, |
None
|
frequency
|
bool
|
If True, returns spike frequency in Hz; otherwise, returns spike count. Default is False. |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
Array of spike counts or frequencies, depending on the |
Raises:
Type | Description |
---|---|
ValueError
|
If both |
Source code in bmtool/analysis/spikes.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
bmtool.analysis.spikes.get_population_spike_rate(spike_data, fs=400.0, t_start=0, t_stop=None, config=None, network_name=None, save=False, save_path=None, normalize=False)
Calculate the population spike rate for each population in the given spike data, with an option to normalize.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_data
|
DataFrame
|
A DataFrame containing spike data with columns 'pop_name', 'timestamps', and 'node_ids' |
required |
fs
|
float
|
Sampling frequency in Hz, which determines the time bin size for calculating the spike rate (default: 400.0) |
400.0
|
t_start
|
float
|
Start time (in milliseconds) for spike rate calculation (default: 0) |
0
|
t_stop
|
Optional[float]
|
Stop time (in milliseconds) for spike rate calculation. If None, defaults to the maximum timestamp in the data |
None
|
config
|
Optional[str]
|
Path to a configuration file containing node information, used to determine the correct number of nodes per population. If None, node count is estimated from unique node spikes (default: None) |
None
|
network_name
|
Optional[str]
|
Name of the network used in the configuration file, allowing selection of nodes for that network.
Required if |
None
|
save
|
bool
|
Whether to save the calculated population spike rate to a file (default: False) |
False
|
save_path
|
Optional[str]
|
Directory path where the file should be saved if |
None
|
normalize
|
bool
|
Whether to normalize the spike rates for each population to a range of [0, 1] (default: False) |
False
|
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
A dictionary where keys are population names, and values are arrays representing the spike rate over time for each population.
If |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Notes
- If
config
is None, the function assumes all cells in each population have fired at least once; otherwise, the node count may be inaccurate. - If normalization is enabled, each population's spike rate is scaled using Min-Max normalization based on its own minimum and maximum values.
Source code in bmtool/analysis/spikes.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
LFP/ECP Analysis
The lfp
module provides tools for analyzing local field potentials (LFP) and extracellular potentials (ECP).
bmtool.analysis.lfp.load_ecp_to_xarray(ecp_file, demean=False)
Load ECP data from an HDF5 file (BMTK sim) into an xarray DataArray.
Parameters:
ecp_file : str Path to the HDF5 file containing ECP data. demean : bool, optional If True, the mean of the data will be subtracted (default is False).
Returns:
xr.DataArray An xarray DataArray containing the ECP data, with time as one dimension and channel_id as another.
Source code in bmtool/analysis/lfp.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
bmtool.analysis.lfp.ecp_to_lfp(ecp_data, cutoff=250, fs=10000, downsample_freq=1000)
Apply a low-pass Butterworth filter to an xarray DataArray and optionally downsample. This filters out the high end frequencies turning the ECP into a LFP
Parameters:
ecp_data : xr.DataArray The input data array containing LFP data with time as one dimension. cutoff : float The cutoff frequency for the low-pass filter in Hz (default is 250Hz). fs : float, optional The sampling frequency of the data (default is 10000 Hz). downsample_freq : float, optional The frequency to downsample to (default is 1000 Hz).
Returns:
xr.DataArray The filtered (and possibly downsampled) data as an xarray DataArray.
Source code in bmtool/analysis/lfp.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
bmtool.analysis.lfp.slice_time_series(data, time_ranges)
Slice the xarray DataArray based on provided time ranges. Can be used to get LFP during certain stimulus times
Parameters:
data : xr.DataArray The input xarray DataArray containing time-series data. time_ranges : tuple or list of tuples One or more tuples representing the (start, stop) time points for slicing. For example: (start, stop) or [(start1, stop1), (start2, stop2)]
Returns:
xr.DataArray A new xarray DataArray containing the concatenated slices.
Source code in bmtool/analysis/lfp.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
bmtool.analysis.lfp.fit_fooof(f, pxx, aperiodic_mode='fixed', dB_threshold=3.0, max_n_peaks=10, freq_range=None, peak_width_limits=None, report=False, plot=False, plt_log=False, plt_range=None, figsize=None, title=None)
Fit a FOOOF model to power spectral density data.
Parameters:
f : array-like Frequencies corresponding to the power spectral density data. pxx : array-like Power spectral density data to fit. aperiodic_mode : str, optional The mode for fitting aperiodic components ('fixed' or 'knee', default is 'fixed'). dB_threshold : float, optional Minimum peak height in dB (default is 3). max_n_peaks : int, optional Maximum number of peaks to fit (default is 10). freq_range : tuple, optional Frequency range to fit (default is None, which uses the full range). peak_width_limits : tuple, optional Limits on the width of peaks (default is None). report : bool, optional If True, will print fitting results (default is False). plot : bool, optional If True, will plot the fitting results (default is False). plt_log : bool, optional If True, use a logarithmic scale for the y-axis in plots (default is False). plt_range : tuple, optional Range for plotting (default is None). figsize : tuple, optional Size of the figure (default is None). title : str, optional Title for the plot (default is None).
Returns:
tuple A tuple containing the fitting results and the FOOOF model object.
Source code in bmtool/analysis/lfp.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
bmtool.analysis.lfp.generate_resd_from_fooof(fooof_model)
Generate residuals from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object.
Returns:
tuple A tuple containing the residual power spectral density and the aperiodic fit.
Source code in bmtool/analysis/lfp.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
bmtool.analysis.lfp.calculate_SNR(fooof_model, freq_band)
Calculate the signal-to-noise ratio (SNR) from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object. freq_band : tuple Frequency band (min, max) for SNR calculation.
Returns:
float The calculated SNR for the specified frequency band.
Source code in bmtool/analysis/lfp.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
bmtool.analysis.lfp.wavelet_filter(x, freq, fs, bandwidth=1.0, axis=-1, show_passband=False)
Compute the Continuous Wavelet Transform (CWT) for a specified frequency using a complex Morlet wavelet.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input signal |
required |
freq
|
float
|
Target frequency for the wavelet filter |
required |
fs
|
float
|
Sampling frequency of the signal |
required |
bandwidth
|
float
|
Bandwidth parameter of the wavelet filter (default is 1.0) |
1.0
|
axis
|
int
|
Axis along which to compute the CWT (default is -1) |
-1
|
show_passband
|
bool
|
If True, print the passband of the wavelet filter (default is False) |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
Continuous Wavelet Transform of the input signal |
Source code in bmtool/analysis/lfp.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
bmtool.analysis.lfp.butter_bandpass_filter(data, lowcut, highcut, fs, order=5, axis=-1)
Apply a Butterworth bandpass filter to the input data.
Source code in bmtool/analysis/lfp.py
359 360 361 362 363 364 365 |
|
bmtool.analysis.lfp.cwt_spectrogram(x, fs, nNotes=6, nOctaves=np.inf, freq_range=(0, np.inf), bandwidth=1.0, axis=-1, detrend=False, normalize=False)
Calculate spectrogram using continuous wavelet transform
Source code in bmtool/analysis/lfp.py
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
|
bmtool.analysis.lfp.cwt_spectrogram_xarray(x, fs, time=None, axis=-1, downsample_fs=None, channel_coords=None, **cwt_kwargs)
Calculate spectrogram using continuous wavelet transform and return an xarray.Dataset x: input array fs: sampling frequency (Hz) axis: dimension index of time axis in x downsample_fs: downsample to the frequency if specified channel_coords: dictionary of {coordinate name: index} for channels cwt_kwargs: keyword arguments for cwt_spectrogram()
Source code in bmtool/analysis/lfp.py
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
Entrainment Analysis
The entrainment
module provides tools for analyzing the entrainment of spikes and lfp
bmtool.analysis.entrainment.calculate_signal_signal_plv(signal1, signal2, fs, freq_of_interest=None, filter_method='wavelet', lowcut=None, highcut=None, bandwidth=2.0)
Calculate Phase Locking Value (PLV) between two signals using wavelet or Hilbert method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal1
|
ndarray
|
First input signal (1D array) |
required |
signal2
|
ndarray
|
Second input signal (1D array, same length as signal1) |
required |
fs
|
float
|
Sampling frequency in Hz |
required |
freq_of_interest
|
float
|
Desired frequency for wavelet PLV calculation, required if filter_method='wavelet' |
None
|
filter_method
|
str
|
Method to use for filtering, either 'wavelet' or 'butter' (default: 'wavelet') |
'wavelet'
|
lowcut
|
float
|
Lower frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
highcut
|
float
|
Upper frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
bandwidth
|
float
|
Bandwidth parameter for wavelet filter when method='wavelet' (default: 2.0) |
2.0
|
Returns:
Type | Description |
---|---|
ndarray
|
Phase Locking Value (1D array) |
Source code in bmtool/analysis/entrainment.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
bmtool.analysis.entrainment.calculate_spike_lfp_plv(spike_times=None, lfp_data=None, spike_fs=None, lfp_fs=None, filter_method='butter', freq_of_interest=None, lowcut=None, highcut=None, bandwidth=2.0, filtered_lfp_phase=None)
Calculate spike-lfp unbiased phase locking value
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
ndarray
|
Array of spike times |
None
|
lfp_data
|
ndarray
|
Local field potential time series data. Not required if filtered_lfp_phase is provided. |
None
|
spike_fs
|
float
|
Sampling frequency in Hz of the spike times, only needed if spike times and LFP have different sampling rates |
None
|
lfp_fs
|
float
|
Sampling frequency in Hz of the LFP data |
None
|
filter_method
|
str
|
Method to use for filtering, either 'wavelet' or 'butter' (default: 'butter') |
'butter'
|
freq_of_interest
|
float
|
Desired frequency for wavelet phase extraction, required if filter_method='wavelet' |
None
|
lowcut
|
float
|
Lower frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
highcut
|
float
|
Upper frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
bandwidth
|
float
|
Bandwidth parameter for wavelet filter when method='wavelet' (default: 2.0) |
2.0
|
filtered_lfp_phase
|
ndarray
|
Pre-computed instantaneous phase of the filtered LFP. If provided, the function will skip the filtering step. |
None
|
Returns:
Type | Description |
---|---|
float
|
Phase Locking Value (unbiased) |
Source code in bmtool/analysis/entrainment.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
bmtool.analysis.entrainment.calculate_ppc(spike_times=None, lfp_data=None, spike_fs=None, lfp_fs=None, filter_method='wavelet', freq_of_interest=None, lowcut=None, highcut=None, bandwidth=2.0, ppc_method='numpy', filtered_lfp_phase=None)
Calculate Pairwise Phase Consistency (PPC) between spike times and LFP signal. Based on https://www.sciencedirect.com/science/article/pii/S1053811910000959
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
ndarray
|
Array of spike times |
None
|
lfp_data
|
ndarray
|
Local field potential time series data. Not required if filtered_lfp_phase is provided. |
None
|
spike_fs
|
float
|
Sampling frequency in Hz of the spike times, only needed if spike times and LFP have different sampling rates |
None
|
lfp_fs
|
float
|
Sampling frequency in Hz of the LFP data |
None
|
filter_method
|
str
|
Method to use for filtering, either 'wavelet' or 'butter' (default: 'wavelet') |
'wavelet'
|
freq_of_interest
|
float
|
Desired frequency for wavelet phase extraction, required if filter_method='wavelet' |
None
|
lowcut
|
float
|
Lower frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
highcut
|
float
|
Upper frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
bandwidth
|
float
|
Bandwidth parameter for wavelet filter when method='wavelet' (default: 2.0) |
2.0
|
ppc_method
|
str
|
Algorithm to use for PPC calculation: 'numpy', 'numba', or 'gpu' (default: 'numpy') |
'numpy'
|
filtered_lfp_phase
|
ndarray
|
Pre-computed instantaneous phase of the filtered LFP. If provided, the function will skip the filtering step. |
None
|
Returns:
Type | Description |
---|---|
float
|
Pairwise Phase Consistency value |
Source code in bmtool/analysis/entrainment.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
bmtool.analysis.entrainment.calculate_ppc2(spike_times=None, lfp_data=None, spike_fs=None, lfp_fs=None, filter_method='wavelet', freq_of_interest=None, lowcut=None, highcut=None, bandwidth=2.0, filtered_lfp_phase=None)
-----------------------------------------------------------------------------
PPC2 Calculation (Vinck et al., 2010)
-----------------------------------------------------------------------------
Equation(Original):
PPC = (2 / (n * (n - 1))) * sum(cos(φ_i - φ_j) for all i < j)
Optimized Formula (Algebraically Equivalent):
PPC = (|sum(e^(i*φ_j))|^2 - n) / (n * (n - 1))
-----------------------------------------------------------------------------
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
ndarray
|
Array of spike times |
None
|
lfp_data
|
ndarray
|
Local field potential time series data. Not required if filtered_lfp_phase is provided. |
None
|
spike_fs
|
float
|
Sampling frequency in Hz of the spike times, only needed if spike times and LFP have different sampling rates |
None
|
lfp_fs
|
float
|
Sampling frequency in Hz of the LFP data |
None
|
filter_method
|
str
|
Method to use for filtering, either 'wavelet' or 'butter' (default: 'wavelet') |
'wavelet'
|
freq_of_interest
|
float
|
Desired frequency for wavelet phase extraction, required if filter_method='wavelet' |
None
|
lowcut
|
float
|
Lower frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
highcut
|
float
|
Upper frequency bound (Hz) for butterworth bandpass filter, required if filter_method='butter' |
None
|
bandwidth
|
float
|
Bandwidth parameter for wavelet filter when method='wavelet' (default: 2.0) |
2.0
|
filtered_lfp_phase
|
ndarray
|
Pre-computed instantaneous phase of the filtered LFP. If provided, the function will skip the filtering step. |
None
|
Returns:
Type | Description |
---|---|
float
|
Pairwise Phase Consistency 2 (PPC2) value |
Source code in bmtool/analysis/entrainment.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
|