LFP/ECP Analysis
The lfp
module provides tools for analyzing local field potentials (LFP) and extracellular potentials (ECP).
bmtool.analysis.lfp.load_ecp_to_xarray(ecp_file, demean=False)
Load ECP data from an HDF5 file (BMTK sim) into an xarray DataArray.
Parameters:
ecp_file : str Path to the HDF5 file containing ECP data. demean : bool, optional If True, the mean of the data will be subtracted (default is False).
Returns:
xr.DataArray An xarray DataArray containing the ECP data, with time as one dimension and channel_id as another.
Source code in bmtool/analysis/lfp.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
bmtool.analysis.lfp.ecp_to_lfp(ecp_data, cutoff=250, fs=10000, downsample_freq=1000)
Apply a low-pass Butterworth filter to an xarray DataArray and optionally downsample. This filters out the high end frequencies turning the ECP into a LFP
Parameters:
ecp_data : xr.DataArray The input data array containing LFP data with time as one dimension. cutoff : float The cutoff frequency for the low-pass filter in Hz (default is 250Hz). fs : float, optional The sampling frequency of the data (default is 10000 Hz). downsample_freq : float, optional The frequency to downsample to (default is 1000 Hz).
Returns:
xr.DataArray The filtered (and possibly downsampled) data as an xarray DataArray.
Source code in bmtool/analysis/lfp.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
bmtool.analysis.lfp.slice_time_series(data, time_ranges)
Slice the xarray DataArray based on provided time ranges. Can be used to get LFP during certain stimulus times
Parameters:
data : xr.DataArray The input xarray DataArray containing time-series data. time_ranges : tuple or list of tuples One or more tuples representing the (start, stop) time points for slicing. For example: (start, stop) or [(start1, stop1), (start2, stop2)]
Returns:
xr.DataArray A new xarray DataArray containing the concatenated slices.
Source code in bmtool/analysis/lfp.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
bmtool.analysis.lfp.fit_fooof(f, pxx, aperiodic_mode='fixed', dB_threshold=3.0, max_n_peaks=10, freq_range=None, peak_width_limits=None, report=False, plot=False, plt_log=False, plt_range=None, figsize=None, title=None)
Fit a FOOOF model to power spectral density data.
Parameters:
f : array-like Frequencies corresponding to the power spectral density data. pxx : array-like Power spectral density data to fit. aperiodic_mode : str, optional The mode for fitting aperiodic components ('fixed' or 'knee', default is 'fixed'). dB_threshold : float, optional Minimum peak height in dB (default is 3). max_n_peaks : int, optional Maximum number of peaks to fit (default is 10). freq_range : tuple, optional Frequency range to fit (default is None, which uses the full range). peak_width_limits : tuple, optional Limits on the width of peaks (default is None). report : bool, optional If True, will print fitting results (default is False). plot : bool, optional If True, will plot the fitting results (default is False). plt_log : bool, optional If True, use a logarithmic scale for the y-axis in plots (default is False). plt_range : tuple, optional Range for plotting (default is None). figsize : tuple, optional Size of the figure (default is None). title : str, optional Title for the plot (default is None).
Returns:
tuple A tuple containing the fitting results and the FOOOF model object.
Source code in bmtool/analysis/lfp.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
bmtool.analysis.lfp.generate_resd_from_fooof(fooof_model)
Generate residuals from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object.
Returns:
tuple A tuple containing the residual power spectral density and the aperiodic fit.
Source code in bmtool/analysis/lfp.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
bmtool.analysis.lfp.calculate_SNR(fooof_model, freq_band)
Calculate the signal-to-noise ratio (SNR) from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object. freq_band : tuple Frequency band (min, max) for SNR calculation.
Returns:
float The calculated SNR for the specified frequency band.
Source code in bmtool/analysis/lfp.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|
bmtool.analysis.lfp.wavelet_filter(x, freq, fs, bandwidth=1.0, axis=-1, show_passband=False)
Compute the Continuous Wavelet Transform (CWT) for a specified frequency using a complex Morlet wavelet.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input signal |
required |
freq
|
float
|
Target frequency for the wavelet filter |
required |
fs
|
float
|
Sampling frequency of the signal |
required |
bandwidth
|
float
|
Bandwidth parameter of the wavelet filter (default is 1.0) |
1.0
|
axis
|
int
|
Axis along which to compute the CWT (default is -1) |
-1
|
show_passband
|
bool
|
If True, print the passband of the wavelet filter (default is False) |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
Continuous Wavelet Transform of the input signal |
Source code in bmtool/analysis/lfp.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
|
bmtool.analysis.lfp.butter_bandpass_filter(data, lowcut, highcut, fs, order=5, axis=-1)
Apply a Butterworth bandpass filter to the input data.
Source code in bmtool/analysis/lfp.py
399 400 401 402 403 404 405 406 407 |
|
bmtool.analysis.lfp.cwt_spectrogram(x, fs, nNotes=6, nOctaves=np.inf, freq_range=(0, np.inf), bandwidth=1.0, axis=-1, detrend=False, normalize=False)
Calculate spectrogram using continuous wavelet transform
Source code in bmtool/analysis/lfp.py
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
|
bmtool.analysis.lfp.cwt_spectrogram_xarray(x, fs, time=None, axis=-1, downsample_fs=None, channel_coords=None, **cwt_kwargs)
Calculate spectrogram using continuous wavelet transform and return an xarray.Dataset x: input array fs: sampling frequency (Hz) axis: dimension index of time axis in x downsample_fs: downsample to the frequency if specified channel_coords: dictionary of {coordinate name: index} for channels cwt_kwargs: keyword arguments for cwt_spectrogram()
Source code in bmtool/analysis/lfp.py
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
|