LFP/ECP Analysis
The lfp module provides tools for analyzing local field potentials (LFP) and extracellular potentials (ECP).
bmtool.analysis.lfp.load_ecp_to_xarray(ecp_file, demean=False)
Load ECP data from an HDF5 file (BMTK sim) into an xarray DataArray.
Parameters:
ecp_file : str Path to the HDF5 file containing ECP data. demean : bool, optional If True, the mean of the data will be subtracted (default is False).
Returns:
xr.DataArray An xarray DataArray containing the ECP data, with time as one dimension and channel_id as another.
Source code in bmtool/analysis/lfp.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | |
bmtool.analysis.lfp.ecp_to_lfp(ecp_data, cutoff=250, fs=10000, downsample_freq=1000)
Apply a low-pass Butterworth filter to an xarray DataArray and optionally downsample. This filters out the high end frequencies turning the ECP into a LFP
Parameters:
ecp_data : xr.DataArray The input data array containing LFP data with time as one dimension. cutoff : float The cutoff frequency for the low-pass filter in Hz (default is 250Hz). fs : float, optional The sampling frequency of the data (default is 10000 Hz). downsample_freq : float, optional The frequency to downsample to (default is 1000 Hz).
Returns:
xr.DataArray The filtered (and possibly downsampled) data as an xarray DataArray.
Source code in bmtool/analysis/lfp.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | |
bmtool.analysis.lfp.slice_time_series(data, time_ranges)
Slice the xarray DataArray based on provided time ranges. Can be used to get LFP during certain stimulus times
Parameters:
data : xr.DataArray The input xarray DataArray containing time-series data. time_ranges : tuple or list of tuples One or more tuples representing the (start, stop) time points for slicing. For example: (start, stop) or [(start1, stop1), (start2, stop2)]
Returns:
xr.DataArray A new xarray DataArray containing the concatenated slices.
Source code in bmtool/analysis/lfp.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
bmtool.analysis.lfp.fit_fooof(f, pxx, aperiodic_mode='fixed', dB_threshold=3.0, max_n_peaks=10, freq_range=None, peak_width_limits=None, report=False, plot=False, plt_log=False, plt_range=None, figsize=None, title=None)
Fit a FOOOF model to power spectral density data.
Parameters:
f : array-like Frequencies corresponding to the power spectral density data. pxx : array-like Power spectral density data to fit. aperiodic_mode : str, optional The mode for fitting aperiodic components ('fixed' or 'knee', default is 'fixed'). dB_threshold : float, optional Minimum peak height in dB (default is 3). max_n_peaks : int, optional Maximum number of peaks to fit (default is 10). freq_range : tuple, optional Frequency range to fit (default is None, which uses the full range). peak_width_limits : tuple, optional Limits on the width of peaks (default is None). report : bool, optional If True, will print fitting results (default is False). plot : bool, optional If True, will plot the fitting results (default is False). plt_log : bool, optional If True, use a logarithmic scale for the y-axis in plots (default is False). plt_range : tuple, optional Range for plotting (default is None). figsize : tuple, optional Size of the figure (default is None). title : str, optional Title for the plot (default is None).
Returns:
tuple A tuple containing the fitting results and the FOOOF model object.
Source code in bmtool/analysis/lfp.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | |
bmtool.analysis.lfp.generate_resd_from_fooof(fooof_model)
Generate residuals from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object.
Returns:
tuple A tuple containing the residual power spectral density and the aperiodic fit.
Source code in bmtool/analysis/lfp.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | |
bmtool.analysis.lfp.calculate_SNR(fooof_model, freq_band)
Calculate the signal-to-noise ratio (SNR) from a fitted FOOOF model.
Parameters:
fooof_model : FOOOF A fitted FOOOF model object. freq_band : tuple Frequency band (min, max) for SNR calculation.
Returns:
float The calculated SNR for the specified frequency band.
Source code in bmtool/analysis/lfp.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | |
bmtool.analysis.lfp.wavelet_filter(x, freq, fs, bandwidth=1.0, axis=-1, show_passband=False)
Compute the Continuous Wavelet Transform (CWT) for a specified frequency using a complex Morlet wavelet.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
ndarray
|
Input signal |
required |
freq
|
float
|
Target frequency for the wavelet filter |
required |
fs
|
float
|
Sampling frequency of the signal |
required |
bandwidth
|
float
|
Bandwidth parameter of the wavelet filter (default is 1.0) |
1.0
|
axis
|
int
|
Axis along which to compute the CWT (default is -1) |
-1
|
show_passband
|
bool
|
If True, print the passband of the wavelet filter (default is False) |
False
|
Returns:
| Type | Description |
|---|---|
ndarray
|
Continuous Wavelet Transform of the input signal |
Source code in bmtool/analysis/lfp.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | |
bmtool.analysis.lfp.butter_bandpass_filter(data, lowcut, highcut, fs, order=5, axis=-1)
Apply a Butterworth bandpass filter to the input data.
Source code in bmtool/analysis/lfp.py
451 452 453 454 455 456 457 458 459 | |
bmtool.analysis.lfp.cwt_spectrogram(x, fs, nNotes=6, nOctaves=np.inf, freq_range=(0, np.inf), bandwidth=1.0, axis=-1, detrend=False, normalize=False)
Calculate spectrogram using continuous wavelet transform
Source code in bmtool/analysis/lfp.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | |
bmtool.analysis.lfp.cwt_spectrogram_xarray(x, fs, time=None, axis=-1, downsample_fs=None, channel_coords=None, **cwt_kwargs)
Calculate spectrogram using continuous wavelet transform and return an xarray.Dataset x: input array fs: sampling frequency (Hz) axis: dimension index of time axis in x downsample_fs: downsample to the frequency if specified channel_coords: dictionary of {coordinate name: index} for channels cwt_kwargs: keyword arguments for cwt_spectrogram()
Source code in bmtool/analysis/lfp.py
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 | |