Spike Analysis
The spikes
module provides functions for loading and analyzing spike data from simulations.
bmtool.analysis.spikes.load_spikes_to_df(spike_file, network_name, sort=True, config=None, groupby='pop_name')
Load spike data from an HDF5 file into a pandas DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_file
|
str
|
Path to the HDF5 file containing spike data |
required |
network_name
|
str
|
The name of the network within the HDF5 file from which to load spike data |
required |
sort
|
bool
|
Whether to sort the DataFrame by 'timestamps' (default: True) |
True
|
config
|
str
|
Path to configuration file to label the cell type of each spike (default: None) |
None
|
groupby
|
Union[str, List[str]]
|
The column(s) to group by (default: 'pop_name') |
'pop_name'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A pandas DataFrame containing 'node_ids' and 'timestamps' columns from the spike data, with additional columns if a config file is provided |
Examples:
>>> df = load_spikes_to_df("spikes.h5", "cortex")
>>> df = load_spikes_to_df("spikes.h5", "cortex", config="config.json", groupby=["pop_name", "model_type"])
Source code in bmtool/analysis/spikes.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
bmtool.analysis.spikes.compute_firing_rate_stats(df, groupby='pop_name', start_time=None, stop_time=None)
Computes the firing rates of individual nodes and the mean and standard deviation of firing rates per group.
Args: df (pd.DataFrame): Dataframe containing spike timestamps and node IDs. groupby (str or list of str, optional): Column(s) to group by (e.g., 'pop_name' or ['pop_name', 'layer']). start_time (float, optional): Start time for the analysis window. Defaults to the minimum timestamp in the data. stop_time (float, optional): Stop time for the analysis window. Defaults to the maximum timestamp in the data.
Returns:
Tuple[pd.DataFrame, pd.DataFrame]:
- The first DataFrame (pop_stats
) contains the mean and standard deviation of firing rates per group.
- The second DataFrame (individual_stats
) contains the firing rate of each individual node.
Source code in bmtool/analysis/spikes.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
bmtool.analysis.spikes._pop_spike_rate(spike_times, time=None, time_points=None, frequency=False)
Calculate the spike count or frequency histogram over specified time intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
Union[ndarray, list]
|
Array or list of spike times in milliseconds |
required |
time
|
Optional[Tuple[float, float, float]]
|
Tuple specifying (start, stop, step) in milliseconds. Used to create evenly spaced time points
if |
None
|
time_points
|
Optional[Union[ndarray, list]]
|
Array or list of specific time points for binning. If provided, |
None
|
frequency
|
bool
|
If True, returns spike frequency in Hz; otherwise, returns spike count. Default is False. |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
Array of spike counts or frequencies, depending on the |
Raises:
Type | Description |
---|---|
ValueError
|
If both |
Source code in bmtool/analysis/spikes.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
bmtool.analysis.spikes.get_population_spike_rate(spike_data, fs=400.0, t_start=0, t_stop=None, config=None, network_name=None, save=False, save_path=None, normalize=False, smooth_window=50, smooth_method='gaussian')
Calculate the population spike rate for each population in the given spike data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_data
|
DataFrame
|
A DataFrame containing spike data with columns 'pop_name', 'timestamps', and 'node_ids' |
required |
fs
|
float
|
Sampling frequency in Hz, which determines the time bin size for calculating the spike rate (default: 400.0) |
400.0
|
t_start
|
float
|
Start time (in milliseconds) for spike rate calculation (default: 0) |
0
|
t_stop
|
Optional[float]
|
Stop time (in milliseconds) for spike rate calculation. If None, defaults to the maximum timestamp in the data |
None
|
config
|
Optional[str]
|
Path to a configuration file containing node information, used to determine the correct number of nodes per population. If None, node count is estimated from unique node spikes (default: None) |
None
|
network_name
|
Optional[str]
|
Name of the network used in the configuration file, allowing selection of nodes for that network.
Required if |
None
|
save
|
bool
|
Whether to save the calculated population spike rate to a file (default: False) |
False
|
save_path
|
Optional[str]
|
Directory path where the file should be saved if |
None
|
normalize
|
bool
|
Whether to normalize the spike rates for each population to a range of [0, 1] (default: False) |
False
|
smooth_window
|
int
|
Window size for smoothing in number of time bins (default: 50) |
50
|
smooth_method
|
str
|
Smoothing method to use: 'gaussian', 'boxcar', or 'exponential' (default: 'gaussian') |
'gaussian'
|
Returns:
Type | Description |
---|---|
DataArray
|
An xarray DataArray containing the spike rates with dimensions of time, population, and type. The 'type' dimension includes 'raw' and 'smoothed' values. The DataArray includes sampling frequency (fs) as an attribute. If normalize is True, each population's spike rate is scaled to [0, 1]. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Notes
- If
config
is None, the function assumes all cells in each population have fired at least once; otherwise, the node count may be inaccurate. - If normalization is enabled, each population's spike rate is scaled using Min-Max normalization.
- Smoothing is applied using scipy.ndimage's filters based on the specified method.
Source code in bmtool/analysis/spikes.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|