Skip to content

Network Connections Plotting API

bmtool.bmplot.connections.is_notebook()

Detect if code is running in a Jupyter notebook environment.

Returns:

bool True if running in a Jupyter notebook, False otherwise.

Notes:

This is used to determine whether to call plt.show() explicitly or rely on Jupyter's automatic display functionality.

Source code in bmtool/bmplot/connections.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def is_notebook() -> bool:
    """
    Detect if code is running in a Jupyter notebook environment.

    Returns:
    --------
    bool
        True if running in a Jupyter notebook, False otherwise.

    Notes:
    ------
    This is used to determine whether to call plt.show() explicitly or
    rely on Jupyter's automatic display functionality.
    """
    try:
        shell = get_ipython().__class__.__name__
        if shell == "ZMQInteractiveShell":
            return True  # Jupyter notebook or qtconsole
        elif shell == "TerminalInteractiveShell":
            return False  # Terminal running IPython
        else:
            return False  # Other type (?)
    except NameError:
        return False  # Probably standard Python interpreter

bmtool.bmplot.connections.total_connection_matrix(config=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, synaptic_info='0', include_gap=True)

Generate a plot displaying total connections or other synaptic statistics.

Parameters:

config : str Path to a BMTK simulation config file. title : str, optional Title for the plot. If None, a default title will be used. sources : str Comma-separated string of network names to use as sources. targets : str Comma-separated string of network names to use as targets. sids : str, optional Comma-separated string of source node identifiers to filter. tids : str, optional Comma-separated string of target node identifiers to filter. no_prepend_pop : bool, optional If True, don't display population name before sid or tid in the plot. save_file : str, optional Path to save the plot. If None, plot is not saved. synaptic_info : str, optional Type of information to display: - '0': Total connections (default) - '1': Mean and standard deviation of connections - '2': All synapse .mod files used - '3': All synapse .json files used include_gap : bool, optional If True, include gap junctions and chemical synapses in the analysis. If False, only include chemical synapses.

Returns:

None The function generates and displays a plot.

Source code in bmtool/bmplot/connections.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def total_connection_matrix(
    config=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    synaptic_info="0",
    include_gap=True,
):
    """
    Generate a plot displaying total connections or other synaptic statistics.

    Parameters:
    -----------
    config : str
        Path to a BMTK simulation config file.
    title : str, optional
        Title for the plot. If None, a default title will be used.
    sources : str
        Comma-separated string of network names to use as sources.
    targets : str
        Comma-separated string of network names to use as targets.
    sids : str, optional
        Comma-separated string of source node identifiers to filter.
    tids : str, optional
        Comma-separated string of target node identifiers to filter.
    no_prepend_pop : bool, optional
        If True, don't display population name before sid or tid in the plot.
    save_file : str, optional
        Path to save the plot. If None, plot is not saved.
    synaptic_info : str, optional
        Type of information to display:
        - '0': Total connections (default)
        - '1': Mean and standard deviation of connections
        - '2': All synapse .mod files used
        - '3': All synapse .json files used
    include_gap : bool, optional
        If True, include gap junctions and chemical synapses in the analysis.
        If False, only include chemical synapses.

    Returns:
    --------
    None
        The function generates and displays a plot.
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []
    text, num, source_labels, target_labels = util.connection_totals(
        config=config,
        nodes=None,
        edges=None,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        synaptic_info=synaptic_info,
        include_gap=include_gap,
    )

    if title is None or title == "":
        title = "Total Connections"
    if synaptic_info == "1":
        title = "Mean and Stdev # of Conn on Target"
    if synaptic_info == "2":
        title = "All Synapse .mod Files Used"
    if synaptic_info == "3":
        title = "All Synapse .json Files Used"
    plot_connection_info(
        text, num, source_labels, target_labels, title, syn_info=synaptic_info, save_file=save_file
    )
    return

bmtool.bmplot.connections.percent_connection_matrix(config=None, nodes=None, edges=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, method='total', include_gap=True)

Generates a plot showing the percent connectivity of a network config: A BMTK simulation config sources: network name(s) to plot targets: network name(s) to plot sids: source node identifier tids: target node identifier no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph method: what percent to displace on the graph 'total','uni',or 'bi' for total connections, unidirectional connections or bidirectional connections save_file: If plot should be saved include_gap: Determines if connectivity shown should include gap junctions + chemical synapses. False will only include chemical

Source code in bmtool/bmplot/connections.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def percent_connection_matrix(
    config=None,
    nodes=None,
    edges=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    method="total",
    include_gap=True,
):
    """
    Generates a plot showing the percent connectivity of a network
    config: A BMTK simulation config
    sources: network name(s) to plot
    targets: network name(s) to plot
    sids: source node identifier
    tids: target node identifier
    no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph
    method: what percent to displace on the graph 'total','uni',or 'bi' for total connections, unidirectional connections or bidirectional connections
    save_file: If plot should be saved
    include_gap: Determines if connectivity shown should include gap junctions + chemical synapses. False will only include chemical
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")

    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []
    text, num, source_labels, target_labels = util.percent_connections(
        config=config,
        nodes=None,
        edges=None,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        method=method,
        include_gap=include_gap,
    )
    if title is None or title == "":
        title = "Percent Connectivity"

    plot_connection_info(text, num, source_labels, target_labels, title, save_file=save_file)
    return

bmtool.bmplot.connections.probability_connection_matrix(config=None, nodes=None, edges=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, dist_X=True, dist_Y=True, dist_Z=True, bins=8, line_plot=False, verbose=False, include_gap=True)

Generates probability graphs need to look into this more to see what it does needs model_template to be defined to work

Source code in bmtool/bmplot/connections.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def probability_connection_matrix(
    config=None,
    nodes=None,
    edges=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    dist_X=True,
    dist_Y=True,
    dist_Z=True,
    bins=8,
    line_plot=False,
    verbose=False,
    include_gap=True,
):
    """
    Generates probability graphs
    need to look into this more to see what it does
    needs model_template to be defined to work
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []

    throwaway, data, source_labels, target_labels = util.connection_probabilities(
        config=config,
        nodes=None,
        edges=None,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        dist_X=dist_X,
        dist_Y=dist_Y,
        dist_Z=dist_Z,
        num_bins=bins,
        include_gap=include_gap,
    )
    if not data.any():
        return
    if data[0][0] == -1:
        return
    # plot_connection_info(data,source_labels,target_labels,title, save_file=save_file)

    # plt.clf()# clears previous plots
    np.seterr(divide="ignore", invalid="ignore")
    num_src, num_tar = data.shape
    fig, axes = plt.subplots(nrows=num_src, ncols=num_tar, figsize=(12, 12))
    fig.subplots_adjust(hspace=0.5, wspace=0.5)

    for x in range(num_src):
        for y in range(num_tar):
            ns = data[x][y]["ns"]
            bins = data[x][y]["bins"]

            XX = bins[:-1]
            YY = ns[0] / ns[1]

            if line_plot:
                axes[x, y].plot(XX, YY)
            else:
                axes[x, y].bar(XX, YY)

            if x == num_src - 1:
                axes[x, y].set_xlabel(target_labels[y])
            if y == 0:
                axes[x, y].set_ylabel(source_labels[x])

            if verbose:
                print("Source: [" + source_labels[x] + "] | Target: [" + target_labels[y] + "]")
                print("X:")
                print(XX)
                print("Y:")
                print(YY)

    tt = "Distance Probability Matrix"
    if title:
        tt = title
    st = fig.suptitle(tt, fontsize=14)
    fig.text(0.5, 0.04, "Target", ha="center")
    fig.text(0.04, 0.5, "Source", va="center", rotation="vertical")
    notebook = is_notebook
    if not notebook:
        fig.show()

    return

bmtool.bmplot.connections.convergence_connection_matrix(config=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, convergence=True, method='mean+std', include_gap=True, return_dict=None)

Generates connection plot displaying convergence data config: A BMTK simulation config sources: network name(s) to plot targets: network name(s) to plot sids: source node identifier tids: target node identifier no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph save_file: If plot should be saved method: 'mean','min','max','stdev' or 'mean+std' connvergence plot

Source code in bmtool/bmplot/connections.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def convergence_connection_matrix(
    config=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    convergence=True,
    method="mean+std",
    include_gap=True,
    return_dict=None,
):
    """
    Generates connection plot displaying convergence data
    config: A BMTK simulation config
    sources: network name(s) to plot
    targets: network name(s) to plot
    sids: source node identifier
    tids: target node identifier
    no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph
    save_file: If plot should be saved
    method: 'mean','min','max','stdev' or 'mean+std' connvergence plot
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    return divergence_connection_matrix(
        config,
        title,
        sources,
        targets,
        sids,
        tids,
        no_prepend_pop,
        save_file,
        convergence,
        method,
        include_gap=include_gap,
        return_dict=return_dict,
    )

bmtool.bmplot.connections.divergence_connection_matrix(config=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, convergence=False, method='mean+std', include_gap=True, return_dict=None)

Generates connection plot displaying divergence data config: A BMTK simulation config sources: network name(s) to plot targets: network name(s) to plot sids: source node identifier tids: target node identifier no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph save_file: If plot should be saved method: 'mean','min','max','stdev', and 'mean+std' for divergence plot

Source code in bmtool/bmplot/connections.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
def divergence_connection_matrix(
    config=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    convergence=False,
    method="mean+std",
    include_gap=True,
    return_dict=None,
):
    """
    Generates connection plot displaying divergence data
    config: A BMTK simulation config
    sources: network name(s) to plot
    targets: network name(s) to plot
    sids: source node identifier
    tids: target node identifier
    no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph
    save_file: If plot should be saved
    method: 'mean','min','max','stdev', and 'mean+std' for divergence plot
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []

    syn_info, data, source_labels, target_labels = util.connection_divergence(
        config=config,
        nodes=None,
        edges=None,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        convergence=convergence,
        method=method,
        include_gap=include_gap,
    )

    # data, labels = util.connection_divergence_average(config=config,nodes=nodes,edges=edges,populations=populations)

    if title is None or title == "":
        if method == "min":
            title = "Minimum "
        elif method == "max":
            title = "Maximum "
        elif method == "std":
            title = "Standard Deviation "
        elif method == "mean":
            title = "Mean "
        else:
            title = "Mean + Std "

        if convergence:
            title = title + "Synaptic Convergence"
        else:
            title = title + "Synaptic Divergence"
    if return_dict:
        dict = plot_connection_info(
            syn_info,
            data,
            source_labels,
            target_labels,
            title,
            save_file=save_file,
            return_dict=return_dict,
        )
        return dict
    else:
        plot_connection_info(
            syn_info, data, source_labels, target_labels, title, save_file=save_file
        )
        return

bmtool.bmplot.connections.gap_junction_matrix(config=None, title=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=False, save_file=None, method='convergence')

Generates connection plot displaying gap junction data. config: A BMTK simulation config sources: network name(s) to plot targets: network name(s) to plot sids: source node identifier tids: target node identifier no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph save_file: If plot should be saved type:'convergence' or 'percent' connections

Source code in bmtool/bmplot/connections.py
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def gap_junction_matrix(
    config=None,
    title=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=False,
    save_file=None,
    method="convergence",
):
    """
    Generates connection plot displaying gap junction data.
    config: A BMTK simulation config
    sources: network name(s) to plot
    targets: network name(s) to plot
    sids: source node identifier
    tids: target node identifier
    no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph
    save_file: If plot should be saved
    type:'convergence' or 'percent' connections
    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    if method != "convergence" and method != "percent":
        raise Exception("type must be 'convergence' or 'percent'")
    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []
    syn_info, data, source_labels, target_labels = util.gap_junction_connections(
        config=config,
        nodes=None,
        edges=None,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        method=method,
    )

    def filter_rows(syn_info, data, source_labels, target_labels):
        """
        Filters out rows in a connectivity matrix that contain only NaN or zero values.

        This function is used to clean up connection matrices by removing rows that have no meaningful data,
        which helps create more informative visualizations of network connectivity.

        Parameters:
        -----------
        syn_info : numpy.ndarray
            Array containing synaptic information corresponding to the data matrix.
        data : numpy.ndarray
            2D matrix containing connectivity data with rows representing sources and columns representing targets.
        source_labels : list
            List of labels for the source populations corresponding to rows in the data matrix.
        target_labels : list
            List of labels for the target populations corresponding to columns in the data matrix.

        Returns:
        --------
        tuple
            A tuple containing the filtered (syn_info, data, source_labels, target_labels) with invalid rows removed.
        """
        # Identify rows with all NaN or all zeros
        valid_rows = ~np.all(np.isnan(data), axis=1) & ~np.all(data == 0, axis=1)

        # Filter rows based on valid_rows mask
        new_syn_info = syn_info[valid_rows]
        new_data = data[valid_rows]
        new_source_labels = np.array(source_labels)[valid_rows]

        return new_syn_info, new_data, new_source_labels, target_labels

    def filter_rows_and_columns(syn_info, data, source_labels, target_labels):
        """
        Filters out both rows and columns in a connectivity matrix that contain only NaN or zero values.

        This function performs a two-step filtering process: first removing rows with no data,
        then transposing the matrix and removing columns with no data (by treating them as rows).
        This creates a cleaner, more informative connectivity matrix visualization.

        Parameters:
        -----------
        syn_info : numpy.ndarray
            Array containing synaptic information corresponding to the data matrix.
        data : numpy.ndarray
            2D matrix containing connectivity data with rows representing sources and columns representing targets.
        source_labels : list
            List of labels for the source populations corresponding to rows in the data matrix.
        target_labels : list
            List of labels for the target populations corresponding to columns in the data matrix.

        Returns:
        --------
        tuple
            A tuple containing the filtered (syn_info, data, source_labels, target_labels) with both
            invalid rows and columns removed.
        """
        # Filter rows first
        syn_info, data, source_labels, target_labels = filter_rows(
            syn_info, data, source_labels, target_labels
        )

        # Transpose data to filter columns
        transposed_syn_info = np.transpose(syn_info)
        transposed_data = np.transpose(data)
        transposed_source_labels = target_labels
        transposed_target_labels = source_labels

        # Filter columns (by treating them as rows in transposed data)
        (
            transposed_syn_info,
            transposed_data,
            transposed_source_labels,
            transposed_target_labels,
        ) = filter_rows(
            transposed_syn_info, transposed_data, transposed_source_labels, transposed_target_labels
        )

        # Transpose back to original orientation
        filtered_syn_info = np.transpose(transposed_syn_info)
        filtered_data = np.transpose(transposed_data)
        filtered_source_labels = transposed_target_labels  # Back to original source_labels
        filtered_target_labels = transposed_source_labels  # Back to original target_labels

        return filtered_syn_info, filtered_data, filtered_source_labels, filtered_target_labels

    syn_info, data, source_labels, target_labels = filter_rows_and_columns(
        syn_info, data, source_labels, target_labels
    )

    if title is None or title == "":
        title = "Gap Junction"
        if method == "convergence":
            title += " Syn Convergence"
        elif method == "percent":
            title += " Percent Connectivity"
    plot_connection_info(syn_info, data, source_labels, target_labels, title, save_file=save_file)
    return

bmtool.bmplot.connections.connection_histogram(config=None, nodes=None, edges=None, sources=[], targets=[], sids=[], tids=[], no_prepend_pop=True, synaptic_info='0', source_cell=None, target_cell=None, include_gap=True)

Generates histogram of number of connections individual cells in a population receieve from another population config: A BMTK simulation config sources: network name(s) to plot targets: network name(s) to plot sids: source node identifier tids: target node identifier no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph source_cell: where connections are coming from target_cell: where connections on coming onto save_file: If plot should be saved

Source code in bmtool/bmplot/connections.py
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
def connection_histogram(
    config=None,
    nodes=None,
    edges=None,
    sources=[],
    targets=[],
    sids=[],
    tids=[],
    no_prepend_pop=True,
    synaptic_info="0",
    source_cell=None,
    target_cell=None,
    include_gap=True,
):
    """
    Generates histogram of number of connections individual cells in a population receieve from another population
    config: A BMTK simulation config
    sources: network name(s) to plot
    targets: network name(s) to plot
    sids: source node identifier
    tids: target node identifier
    no_prepend_pop: dictates if population name is displayed before sid or tid when displaying graph
    source_cell: where connections are coming from
    target_cell: where connections on coming onto
    save_file: If plot should be saved
    """

    def connection_pair_histogram(**kwargs):
        """
        Creates a histogram showing the distribution of connection counts between a specific source and target cell type.

        This function is designed to be used with the relation_matrix utility and will only create histograms
        for the specified source and target cell types, ignoring all other combinations.

        Parameters:
        -----------
        kwargs : dict
            Dictionary containing the following keys:
            - edges: DataFrame containing edge information
            - sid: Column name for source ID type in the edges DataFrame
            - tid: Column name for target ID type in the edges DataFrame
            - source_id: Value to filter edges by source ID type
            - target_id: Value to filter edges by target ID type

        Global parameters used:
        ---------------------
        source_cell : str
            The source cell type to plot.
        target_cell : str
            The target cell type to plot.
        include_gap : bool
            Whether to include gap junctions in the analysis. If False, gap junctions are excluded.

        Returns:
        --------
        None
            Displays a histogram showing the distribution of connection counts.
        """
        edges = kwargs["edges"]
        source_id_type = kwargs["sid"]
        target_id_type = kwargs["tid"]
        source_id = kwargs["source_id"]
        target_id = kwargs["target_id"]
        if source_id == source_cell and target_id == target_cell:
            temp = edges[
                (edges[source_id_type] == source_id) & (edges[target_id_type] == target_id)
            ]
            if not include_gap:
                temp = temp[~temp["is_gap_junction"]]
            node_pairs = temp.groupby("target_node_id")["source_node_id"].count()
            try:
                conn_mean = statistics.mean(node_pairs.values)
                conn_std = statistics.stdev(node_pairs.values)
                conn_median = statistics.median(node_pairs.values)
                label = "mean {:.2f} std {:.2f} median {:.2f}".format(
                    conn_mean, conn_std, conn_median
                )
            except:  # lazy fix for std not calculated with 1 node
                conn_mean = statistics.mean(node_pairs.values)
                conn_median = statistics.median(node_pairs.values)
                label = "mean {:.2f} median {:.2f}".format(conn_mean, conn_median)
            plt.hist(node_pairs.values, density=False, bins="auto", stacked=True, label=label)
            plt.legend()
            plt.xlabel("# of conns from {} to {}".format(source_cell, target_cell))
            plt.ylabel("# of cells")
            plt.show()
        else:  # dont care about other cell pairs so pass
            pass

    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    sources = sources.split(",")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []
    util.relation_matrix(
        config,
        nodes,
        edges,
        sources,
        targets,
        sids,
        tids,
        not no_prepend_pop,
        relation_func=connection_pair_histogram,
        synaptic_info=synaptic_info,
    )

bmtool.bmplot.connections.connection_distance(config, sources, targets, source_cell_id, target_id_type, ignore_z=False)

Plots the 3D spatial distribution of target nodes relative to a source node and a histogram of distances from the source node to each target node.

Parameters:

config: (str) A BMTK simulation config sources: (str) network name(s) to plot targets: (str) network name(s) to plot source_cell_id : (int) ID of the source cell for calculating distances to target nodes. target_id_type : (str) A string to filter target nodes based off the target_query. ignore_z : (bool) A bool to ignore_z axis or not for when calculating distance default is False

Source code in bmtool/bmplot/connections.py
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
def connection_distance(
    config: str,
    sources: str,
    targets: str,
    source_cell_id: int,
    target_id_type: str,
    ignore_z: bool = False,
) -> None:
    """
    Plots the 3D spatial distribution of target nodes relative to a source node
    and a histogram of distances from the source node to each target node.

    Parameters:
    ----------
    config: (str) A BMTK simulation config
    sources: (str) network name(s) to plot
    targets: (str) network name(s) to plot
    source_cell_id : (int) ID of the source cell for calculating distances to target nodes.
    target_id_type : (str) A string to filter target nodes based off the target_query.
    ignore_z : (bool) A bool to ignore_z axis or not for when calculating distance default is False

    """
    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    # if source != target:
    # raise Exception("Code is setup for source and target to be the same! Look at source code for function to add feature")

    # Load nodes and edges based on config file
    nodes, edges = util.load_nodes_edges_from_config(config)

    edge_network = sources + "_to_" + targets
    node_network = sources

    # Filter edges to obtain connections originating from the source node
    edge = edges[edge_network]
    edge = edge[edge["source_node_id"] == source_cell_id]
    if target_id_type:
        edge = edge[edge["target_query"].str.contains(target_id_type, na=False)]

    target_node_ids = edge["target_node_id"]

    # Filter nodes to obtain only the target and source nodes
    node = nodes[node_network]
    target_nodes = node.loc[node.index.isin(target_node_ids)]
    source_node = node.loc[node.index == source_cell_id]

    # Calculate distances between source node and each target node
    if ignore_z:
        target_positions = target_nodes[["pos_x", "pos_y"]].values
        source_position = np.array(
            [source_node["pos_x"], source_node["pos_y"]]
        ).ravel()  # Ensure 1D shape
    else:
        target_positions = target_nodes[["pos_x", "pos_y", "pos_z"]].values
        source_position = np.array(
            [source_node["pos_x"], source_node["pos_y"], source_node["pos_z"]]
        ).ravel()  # Ensure 1D shape
    distances = np.linalg.norm(target_positions - source_position, axis=1)

    # Plot positions of source and target nodes in 3D space or 2D
    if ignore_z:
        fig = plt.figure(figsize=(8, 6))
        ax = fig.add_subplot(111)
        ax.scatter(target_nodes["pos_x"], target_nodes["pos_y"], c="blue", label="target cells")
        ax.scatter(source_node["pos_x"], source_node["pos_y"], c="red", label="source cell")
    else:
        fig = plt.figure(figsize=(8, 6))
        ax = fig.add_subplot(111, projection="3d")
        ax.scatter(
            target_nodes["pos_x"],
            target_nodes["pos_y"],
            target_nodes["pos_z"],
            c="blue",
            label="target cells",
        )
        ax.scatter(
            source_node["pos_x"],
            source_node["pos_y"],
            source_node["pos_z"],
            c="red",
            label="source cell",
        )

    # Optional: Add text annotations for distances
    # for i, distance in enumerate(distances):
    #     ax.text(target_nodes['pos_x'].iloc[i], target_nodes['pos_y'].iloc[i], target_nodes['pos_z'].iloc[i],
    #             f'{distance:.2f}', color='black', fontsize=8, ha='center')

    plt.legend()
    plt.show()

    # Plot distances in a separate 2D plot
    plt.figure(figsize=(8, 6))
    plt.hist(distances, bins=20, color="blue", edgecolor="black")
    plt.xlabel("Distance")
    plt.ylabel("Count")
    plt.title("Distance from Source Node to Each Target Node")
    plt.grid(True)
    plt.show()

bmtool.bmplot.connections.edge_histogram_matrix(config=None, sources=None, targets=None, sids=None, tids=None, no_prepend_pop=None, edge_property=None, time=None, time_compare=None, report=None, title=None, save_file=None)

Generates a matrix of histograms showing the distribution of edge properties between different populations.

This function creates a grid of histograms where each cell in the grid represents the distribution of a specific edge property (e.g., synaptic weights, delays) between a source population (row) and target population (column).

Parameters:

config : str Path to a BMTK simulation config file. sources : str Comma-separated list of source network names. targets : str Comma-separated list of target network names. sids : str, optional Comma-separated list of source node identifiers to filter by. tids : str, optional Comma-separated list of target node identifiers to filter by. no_prepend_pop : bool, optional If True, population names are not prepended to node identifiers in the display. edge_property : str The edge property to analyze and display in the histograms (e.g., 'syn_weight', 'delay'). time : int, optional Time point to analyze from a time series report. time_compare : int, optional Second time point for comparison with 'time'. report : str, optional Name of the report to analyze. title : str, optional Custom title for the plot. save_file : str, optional Path to save the generated plot.

Returns:

None Displays a matrix of histograms.

Source code in bmtool/bmplot/connections.py
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
def edge_histogram_matrix(
    config=None,
    sources=None,
    targets=None,
    sids=None,
    tids=None,
    no_prepend_pop=None,
    edge_property=None,
    time=None,
    time_compare=None,
    report=None,
    title=None,
    save_file=None,
):
    """
    Generates a matrix of histograms showing the distribution of edge properties between different populations.

    This function creates a grid of histograms where each cell in the grid represents the distribution of a
    specific edge property (e.g., synaptic weights, delays) between a source population (row) and
    target population (column).

    Parameters:
    -----------
    config : str
        Path to a BMTK simulation config file.
    sources : str
        Comma-separated list of source network names.
    targets : str
        Comma-separated list of target network names.
    sids : str, optional
        Comma-separated list of source node identifiers to filter by.
    tids : str, optional
        Comma-separated list of target node identifiers to filter by.
    no_prepend_pop : bool, optional
        If True, population names are not prepended to node identifiers in the display.
    edge_property : str
        The edge property to analyze and display in the histograms (e.g., 'syn_weight', 'delay').
    time : int, optional
        Time point to analyze from a time series report.
    time_compare : int, optional
        Second time point for comparison with 'time'.
    report : str, optional
        Name of the report to analyze.
    title : str, optional
        Custom title for the plot.
    save_file : str, optional
        Path to save the generated plot.

    Returns:
    --------
    None
        Displays a matrix of histograms.
    """

    if not config:
        raise Exception("config not defined")
    if not sources or not targets:
        raise Exception("Sources or targets not defined")
    targets = targets.split(",")
    if sids:
        sids = sids.split(",")
    else:
        sids = []
    if tids:
        tids = tids.split(",")
    else:
        tids = []

    if time_compare:
        time_compare = int(time_compare)

    data, source_labels, target_labels = util.edge_property_matrix(
        edge_property,
        nodes=None,
        edges=None,
        config=config,
        sources=sources,
        targets=targets,
        sids=sids,
        tids=tids,
        prepend_pop=not no_prepend_pop,
        report=report,
        time=time,
        time_compare=time_compare,
    )

    # Fantastic resource
    # https://stackoverflow.com/questions/7941207/is-there-a-function-to-make-scatterplot-matrices-in-matplotlib
    num_src, num_tar = data.shape
    fig, axes = plt.subplots(nrows=num_src, ncols=num_tar, figsize=(12, 12))
    fig.subplots_adjust(hspace=0.5, wspace=0.5)

    for x in range(num_src):
        for y in range(num_tar):
            axes[x, y].hist(data[x][y])

            if x == num_src - 1:
                axes[x, y].set_xlabel(target_labels[y])
            if y == 0:
                axes[x, y].set_ylabel(source_labels[x])

    tt = edge_property + " Histogram Matrix"
    if title:
        tt = title
    st = fig.suptitle(tt, fontsize=14)
    fig.text(0.5, 0.04, "Target", ha="center")
    fig.text(0.04, 0.5, "Source", va="center", rotation="vertical")
    plt.draw()

bmtool.bmplot.connections.distance_delay_plot(simulation_config, source, target, group_by, sid, tid)

Plots the relationship between the distance and delay of connections between nodes in a neural network simulation.

This function loads the node and edge data from a simulation configuration file, filters nodes by population or group, identifies connections (edges) between source and target node populations, calculates the Euclidean distance between connected nodes, and plots the delay as a function of distance.

Args: simulation_config (str): Path to the simulation config file source (str): The name of the source population in the edge data. target (str): The name of the target population in the edge data. group_by (str): Column name to group nodes by (e.g., population name). sid (str): Identifier for the source group (e.g., 'PN'). tid (str): Identifier for the target group (e.g., 'PN').

Returns: None: The function creates and displays a scatter plot of distance vs delay.

Source code in bmtool/bmplot/connections.py
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
def distance_delay_plot(
    simulation_config: str, source: str, target: str, group_by: str, sid: str, tid: str
) -> None:
    """
    Plots the relationship between the distance and delay of connections between nodes in a neural network simulation.

    This function loads the node and edge data from a simulation configuration file, filters nodes by population or group,
    identifies connections (edges) between source and target node populations, calculates the Euclidean distance between
    connected nodes, and plots the delay as a function of distance.

    Args:
        simulation_config (str): Path to the simulation config file
        source (str): The name of the source population in the edge data.
        target (str): The name of the target population in the edge data.
        group_by (str): Column name to group nodes by (e.g., population name).
        sid (str): Identifier for the source group (e.g., 'PN').
        tid (str): Identifier for the target group (e.g., 'PN').

    Returns:
        None: The function creates and displays a scatter plot of distance vs delay.
    """
    nodes, edges = util.load_nodes_edges_from_config(simulation_config)
    nodes = nodes[target]
    # node id is index of nodes df
    node_id_source = nodes[nodes[group_by] == sid].index
    node_id_target = nodes[nodes[group_by] == tid].index

    edges = edges[f"{source}_to_{target}"]
    edges = edges[
        edges["source_node_id"].isin(node_id_source) & edges["target_node_id"].isin(node_id_target)
    ]

    stuff_to_plot = []
    for index, row in edges.iterrows():
        try:
            source_node = row["source_node_id"]
            target_node = row["target_node_id"]

            source_pos = nodes.loc[[source_node], ["pos_x", "pos_y", "pos_z"]]
            target_pos = nodes.loc[[target_node], ["pos_x", "pos_y", "pos_z"]]

            distance = np.linalg.norm(source_pos.values - target_pos.values)

            delay = row["delay"]  # This line may raise KeyError
            stuff_to_plot.append([distance, delay])

        except KeyError as e:
            print(f"KeyError: Missing key {e} in either edge properties or node positions.")
        except IndexError as e:
            print(f"IndexError: Node ID {source_node} or {target_node} not found in nodes.")
        except Exception as e:
            print(f"Unexpected error at edge index {index}: {e}")

    plt.scatter([x[0] for x in stuff_to_plot], [x[1] for x in stuff_to_plot])
    plt.xlabel("Distance")
    plt.ylabel("Delay")
    plt.title(f"Distance vs Delay for edge between {sid} and {tid}")
    plt.show()

bmtool.bmplot.connections.plot_synapse_location_histograms(config, target_model, source=None, target=None)

generates a histogram of the positions of the synapses on a cell broken down by section config: a BMTK config target_model: the name of the model_template used when building the BMTK node source: The source BMTK network target: The target BMTK network

Source code in bmtool/bmplot/connections.py
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
def plot_synapse_location_histograms(config, target_model, source=None, target=None):
    """
    generates a histogram of the positions of the synapses on a cell broken down by section
    config: a BMTK config
    target_model: the name of the model_template used when building the BMTK node
    source: The source BMTK network
    target: The target BMTK network
    """
    # Load mechanisms and template

    util.load_templates_from_config(config)

    # Load node and edge data
    nodes, edges = util.load_nodes_edges_from_config(config)
    nodes = nodes[source]
    edges = edges[f"{source}_to_{target}"]

    # Map target_node_id to model_template
    edges["target_model_template"] = edges["target_node_id"].map(nodes["model_template"])

    # Map source_node_id to pop_name
    edges["source_pop_name"] = edges["source_node_id"].map(nodes["pop_name"])

    edges = edges[edges["target_model_template"] == target_model]

    # Create the cell model from target model
    cell = getattr(h, target_model.split(":")[1])()

    # Create a mapping from section index to section name
    section_id_to_name = {}
    for idx, sec in enumerate(cell.all):
        section_id_to_name[idx] = sec.name()

    # Add a new column with section names based on afferent_section_id
    edges["afferent_section_name"] = edges["afferent_section_id"].map(section_id_to_name)

    # Get unique sections and source populations
    unique_pops = edges["source_pop_name"].unique()

    # Filter to only include sections with data
    section_counts = edges["afferent_section_name"].value_counts()
    sections_with_data = section_counts[section_counts > 0].index.tolist()

    # Create a figure with subplots for each section
    plt.figure(figsize=(8, 12))

    # Color map for source populations
    color_map = plt.cm.tab10(np.linspace(0, 1, len(unique_pops)))
    pop_colors = {pop: color for pop, color in zip(unique_pops, color_map)}

    # Create a histogram for each section
    for i, section in enumerate(sections_with_data):
        ax = plt.subplot(len(sections_with_data), 1, i + 1)

        # Get data for this section
        section_data = edges[edges["afferent_section_name"] == section]

        # Group by source population
        for pop_name, pop_group in section_data.groupby("source_pop_name"):
            if len(pop_group) > 0:
                ax.hist(
                    pop_group["afferent_section_pos"],
                    bins=15,
                    alpha=0.7,
                    label=pop_name,
                    color=pop_colors[pop_name],
                )

        # Set title and labels
        ax.set_title(f"{section}", fontsize=10)
        ax.set_xlabel("Section Position", fontsize=8)
        ax.set_ylabel("Frequency", fontsize=8)
        ax.tick_params(labelsize=7)
        ax.grid(True, alpha=0.3)

        # Only add legend to the first plot
        if i == 0:
            ax.legend(fontsize=8)

    plt.tight_layout()
    plt.suptitle(
        "Connection Distribution by Cell Section and Source Population", fontsize=16, y=1.02
    )
    if is_notebook:
        plt.show()
    else:
        pass

    # Create a summary table
    print("Summary of connections by section and source population:")
    pivot_table = edges.pivot_table(
        values="afferent_section_id",
        index="afferent_section_name",
        columns="source_pop_name",
        aggfunc="count",
        fill_value=0,
    )
    print(pivot_table)