Spike Plotting API
bmtool.bmplot.spikes.raster(spikes_df=None, config=None, network_name=None, groupby='pop_name', sortby=None, ax=None, tstart=None, tstop=None, color_map=None, dot_size=0.3)
Plots a raster plot of neural spikes, with different colors for each population.
Parameters:
spikes_df : pd.DataFrame, optional
DataFrame containing spike data with columns 'timestamps', 'node_ids', and optional 'pop_name'.
config : str, optional
Path to the configuration file used to load node data.
network_name : str, optional
Specific network name to select from the configuration; if not provided, uses the first network.
groupby : str, optional
Column name to group spikes by for coloring. Default is 'pop_name'.
sortby : str, optional
Column name to sort node_ids within each group. If provided, nodes within each population will be sorted by this column.
ax : matplotlib.axes.Axes, optional
Axes on which to plot the raster; if None, a new figure and axes are created.
tstart : float, optional
Start time for filtering spikes; only spikes with timestamps greater than tstart will be plotted.
tstop : float, optional
Stop time for filtering spikes; only spikes with timestamps less than tstop will be plotted.
color_map : dict, optional
Dictionary specifying colors for each population. Keys should be population names, and values should be color values.
dot_size: float, optional
Size of the dot to display on the scatterplot
Returns:
matplotlib.axes.Axes Axes with the raster plot.
Notes:
- If
configis provided, the function merges population names from the node data withspikes_df. - Each unique population from groupby in
spikes_dfwill be represented by a different color ifcolor_mapis not specified. - If
color_mapis provided, it should contain colors for all uniquepop_namevalues inspikes_df.
Source code in bmtool/bmplot/spikes.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
bmtool.bmplot.spikes.plot_firing_rate_pop_stats(firing_stats, groupby, ax=None, color_map=None)
Plots a bar graph of mean firing rates with error bars (standard deviation).
Parameters:
firing_stats : pd.DataFrame Dataframe containing 'firing_rate_mean' and 'firing_rate_std'. groupby : str or list of str Column(s) used for grouping. ax : matplotlib.axes.Axes, optional Axes on which to plot the bar chart; if None, a new figure and axes are created. color_map : dict, optional Dictionary specifying colors for each group. Keys should be group names, and values should be color values.
Returns:
matplotlib.axes.Axes Axes with the bar plot.
Source code in bmtool/bmplot/spikes.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | |
bmtool.bmplot.spikes.plot_firing_rate_distribution(individual_stats, groupby, ax=None, color_map=None, plot_type='box', swarm_alpha=0.6, logscale=False)
Plots a distribution of individual firing rates using one or more plot types (box plot, violin plot, or swarm plot), overlaying them on top of each other.
Parameters:
individual_stats : pd.DataFrame Dataframe containing individual firing rates and corresponding group labels. groupby : str or list of str Column(s) used for grouping. ax : matplotlib.axes.Axes, optional Axes on which to plot the graph; if None, a new figure and axes are created. color_map : dict, optional Dictionary specifying colors for each group. Keys should be group names, and values should be color values. plot_type : str or list of str, optional List of plot types to generate. Options: "box", "violin", "swarm". Default is "box". swarm_alpha : float, optional Transparency of swarm plot points. Default is 0.6. logscale : bool, optional If True, use logarithmic scale for the y-axis (default is False).
Returns:
matplotlib.axes.Axes Axes with the selected plot type(s) overlayed.
Source code in bmtool/bmplot/spikes.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |
bmtool.bmplot.spikes.plot_firing_rate_vs_node_attribute(individual_stats, groupby, attribute, config=None, nodes=None, network_name=None, figsize=(12, 8), dot_size=3, color_map=None)
Plot firing rate vs node attribute for each group in separate subplots.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
individual_stats
|
DataFrame
|
DataFrame containing individual cell firing rates from compute_firing_rate_stats |
required |
groupby
|
str
|
Column name in individual_stats to group plots by |
required |
attribute
|
str
|
Node attribute column name to plot against firing rate |
required |
config
|
str
|
Path to configuration file for loading node data |
None
|
nodes
|
DataFrame
|
Pre-loaded node data as alternative to loading from config |
None
|
network_name
|
str
|
Name of network to load from config file |
None
|
figsize
|
Tuple[float, float]
|
Figure dimensions (width, height) in inches |
(12, 8)
|
dot_size
|
float
|
Size of scatter plot points |
3
|
color_map
|
dict
|
Dictionary specifying colors for each group. Keys should be group names, and values should be color values. |
None
|
Returns:
| Type | Description |
|---|---|
Figure
|
Figure containing the subplots |
Raises:
| Type | Description |
|---|---|
ValueError
|
If neither config nor nodes is provided If network_name is missing when using config If attribute is not found in nodes DataFrame If node_ids column is missing If nodes index is not unique |
Source code in bmtool/bmplot/spikes.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | |
bmtool.bmplot.spikes.plot_firing_rate_histogram(individual_stats, groupby='pop_name', ax=None, color_map=None, bins=30, alpha=0.7, figsize=(12, 8), stacked=False, logscale=False, min_fr=None)
Plot histograms of firing rates for each population group.
Parameters:
individual_stats : pd.DataFrame DataFrame containing individual firing rates with group labels. groupby : str, optional Column name to group by (default is "pop_name"). ax : matplotlib.axes.Axes, optional Axes on which to plot; if None, a new figure is created. color_map : dict, optional Dictionary specifying colors for each group. Keys should be group names, and values should be color values. bins : int, optional Number of bins for the histogram (default is 30). alpha : float, optional Transparency level for the histograms (default is 0.7). figsize : Tuple[float, float], optional Figure size if creating a new figure (default is (12, 8)). stacked : bool, optional If True, plot all histograms on a single axes stacked (default is False). logscale : bool, optional If True, use logarithmic scale for the x-axis (default is False). min_fr : float, optional Minimum firing rate for log scale bins (default is None).
Returns:
matplotlib.figure.Figure Figure containing the histogram subplots.
Source code in bmtool/bmplot/spikes.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | |